Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 359: 142266, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714245

RESUMEN

Effective, post-accidental management needs an accurate understanding of the biogeochemical behavior of radionuclides in surface environments at a regional scale. Studies on stable isotopes (element homologs) can improve this knowledge. This work focuses on the biogeochemical behavior of stable cesium (Cs) along a major European fluvial-estuarine system, the Gironde Estuary (SW France). We present results obtained from (i) a long-term monitoring (2014-2017) of dissolved (Csd) and particulate (Csp) Cs concentrations at five sites along the freshwater continuum of the Garonne watershed, (ii) Csd and Csp concentrations during four oceanographic campaigns at contrasting hydrological conditions along longitudinal profiles of the estuarine system, (iii) a 24 h cycle of Csp at the estuary mouth, and (iv) a historical trend of Cs bioconcentration in wild oysters at the estuary mouth (RNO/ROCCH, 1984-2017). In addition, we model the partitioning of Cs within the estuarine environment for clay mineral interactions via PhreeqC. At fluvial sites, we observe a geogenic dependence of the Csp and a seasonal variability of Csd, with a downstream increase of the solid-liquid partitioning (log10 Kd values from 3.64 to 6.75 L kg-1) for suspended particulate matter (SPM) < 200 mg L-1. Along the estuarine salinity gradients, Cs shows a non-conservative behavior where fresh SPM (defined as Cs-depleted particles recently put in contact with Csd) act as a Cs sink during both flood and low discharge (drought) conditions. This sorption behavior was explained by the geochemical model, highlighting the relevance of ionic strength, water and SPM residence times. However, at high salinities, the overall log10 Kd value decreases from 6.02 to 5.20 for SPM ∼300-350 mg L-1 due to the Csd oceanic endmember. Despite wild oysters showing low bioconcentration factors (∼1220 L kg-1) at the estuary mouth, they are sensitive organisms to Cs fluxes.

2.
Chemosphere ; 353: 141572, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430941

RESUMEN

Zinc (Zn) isotope compositions in soft mussel tissues help identify internal biological processes and track coastal Zn sources in coastal environments, thus aiding in managing marine metal pollution. This study investigated the seasonal and multi-decadal Zn isotope compositions of blue mussels (genus Mytilus) from two French coastal sites with contrasting Zn environmental contamination. Concurrently, we characterized the isotope ratios of sediments and plankton samples at each site to understand the associations between organisms and abiotic compartments. Our primary objective was to determine whether these isotope compositions trace long-term anthropogenic emission patterns or if they reflect short-term biological processes. The multi-decadal isotope profiles of mussels in the Loire Estuary and Toulon Bay showed no isotope variations, implying the enduring stability of the relative contributions of natural and anthropogenic Zn sources over time. At seasonal scales, Zn isotope ratios were also constant; hence, isotope effects related to spawning and body growth were not discernible. The multi-compartmental analysis between the sites revealed that Toulon Bay exhibits a remarkably lower Zn isotope ratio across all studied matrices, suggesting the upward transfer of anthropogenic Zn in the food web. In contrast, the Zn isotope variability observed for sediments and organisms from the Loire Estuary fell within the natural baseline of this element. In both sites, adsorptive geogenic material carrying significant amounts of Zn masks the biological isotope signature of plankton, making it difficult to determine whether the Zn isotope ratio in mussels solely reflects the planktonic diet or if it is further modified by biological homeostasis. In summary, Zn isotope ratios in mussels offer promising avenues for delineating source-specific isotope signatures, contingent upon a comprehensive understanding of the isotope fractionation processes associated with the trophic transfer of this element through the plankton.


Asunto(s)
Mytilus edulis , Contaminantes Químicos del Agua , Animales , Estaciones del Año , Monitoreo del Ambiente , Isótopos de Zinc/análisis , Isótopos/análisis , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 922: 171385, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431160

RESUMEN

Rare earth elements (REEs), attractive to society because of their applications in industry, agriculture and medicine, are increasingly released into the environment especially in industrialized estuaries. This study compared the REE distribution in the abiotic compartments: water (dissolved phase (<0.45 µm), suspended particulate matter (SPM)) and sediment of the Loire and Seine estuaries (France). A total of 8 and 6 sites were investigated in the Loire and Seine, respectively, as well as 5 additional offshore sites for the Loire. Total REE concentrations were higher in the Loire for the dissolved phase (93.5 ± 63.3 vs 87.7 ± 16.2 ng/L), SPM (173.9 ± 18.3 vs 114.0 ± 17.8 mg/kg dw) and sediments (198.2 ± 27.9 vs 73.2 ± 27.4 mg/kg dw), explained by higher geogenic inputs. Individual REE contributions along with normalization highlighted heavy REE enrichments and Gd positive anomalies in the dissolved phase of the two estuaries, whereas REE distributions in SPM and sediments followed the natural abundance of the REE classes. The calculated Gd anomalies in the dissolved phase were higher in the Seine (9.7 ± 3.4) than in the Loire (3.0 ± 0.8), corresponding to 88.3 ± 5.1 % and 64.4 ± 11.1 % of anthropogenic Gd. This demonstrates a higher contamination of the Seine estuary, certainly due to the difference in the number of inhabitants between both areas involving different amounts of Gd used in medicine. The offshore sites of Loire showed lower total REE concentrations (55.8 ± 5.8 ng/L, 26.7 ± 38.2 mg/kg dw and 100.1 ± 11.7 mg/kg dw for the dissolved phase, SPM and sediments, respectively) and lower Gd anomalies (1.2 ± 0.2) corresponding to only 13.3 ± 3.9 % of anthropogenic Gd, confirming a contamination from the watershed. This study comparing two major French estuaries provides new data on the REE distribution in natural aquatic systems.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Gadolinio/análisis , Estuarios , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Ríos , Metales de Tierras Raras/análisis , Material Particulado/análisis , Francia , Ecosistema
4.
Sci Total Environ ; 914: 169652, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159776

RESUMEN

The increasing use of rare earth elements (REEs) in many industrial sectors and in medecine, causes discharges into the environment and particularly in estuarine areas subjected to strong anthropogenic pressures. Here, we assessed the distribution of REEs along the food web of the Loire estuary. Several species representative of different trophic levels were sampled: 8 vertebrates, 3 crustaceans, 2 mollusks, 3 annelids and 4 algae, as well as Haploops sp. tubes rather related to sediment. The total REE concentrations measured by ICP-MS were the highest in Haploops sp. tubes (141.1 ± 4.7 µg/g dw), algae (1.5 to 34.5 µg/g dw), mollusks (9.9 to 12.0 µg/g dw), annelids (0.7 to 19.9 µg/g dw) and crustaceans (1.4 to 6.3 µg/g dw) and the lowest in vetebrates (0.1 to 1.6 µg/g dw). The individual contribution of REEs was, however, similar between most studied species with a higher contribution of light REEs (76.7 ± 7.6 %) compared to heavy REEs (14.1 ± 3.7 %) or medium REEs (9.2 ± 5.8 %). Trophic relations were estimated by stable isotope analysis of C and N and the linear regression of δ15N with total REE concentrations highlighted a trophic dilution with a corresponding TMS of -2.0. The tissue-specific bioaccumulation investigated for vertebrates demonstrated a slightly higher REE accumulation in gonads than in the muscle. Finally, positive Eu, Gd, Tb and Lu anomalies were highlighted in the normalized REE patterns of most studied species (especially in fish and crustaceans), which is consistent with results in the dissolved phase for Eu and Gd. These anomalies could either be due to anthropogenic inputs or to various bioaccumulation/elimination processes according to the specific species physiology. This study, including most of the trophic levels of the Loire estuary food web provides new insights on the bioaccumulation and trophic transfer of REEs in natural ecosystems.


Asunto(s)
Cadena Alimentaria , Metales de Tierras Raras , Animales , Ecosistema , Estuarios , Metales de Tierras Raras/análisis , Francia
5.
Mar Pollut Bull ; 199: 115975, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160604

RESUMEN

The mid-20th century industrial peak caused severe global lead (Pb) marine contamination. Although Europe initiated Pb emission reduction regulations in the 1980s, the short- and long-term impacts remain unclear. This study investigates the evolution of Pb contamination on the French coast through elemental and isotope analysis in oysters and mussels from the French "Mussel Watch" Program. Observations at 114 monitoring stations over four decades have shown decreasing Pb levels in these bivalve mollusks. In 1988, 95 % exceeded the background reference values; this level had dropped to 39 % by 2021. The Pb isotope ratios in bivalves from eight target sites revealed a reduction in bioaccumulated anthropogenic Pb, albeit without complete elimination. The long residence time of legacy Pb combined with inputs from diffuse urban sources likely explains the persistent presence of anthropogenic Pb on the French coast. This study endorses the importance of continuous biomonitoring to evaluate environmental regulations and policies.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Plomo/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Isótopos/análisis
6.
Mar Pollut Bull ; 191: 114901, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058830

RESUMEN

Active biomonitoring of chemical contamination (e.g., Cd, Hg, Pb, DDT, PCB, PAH) in French Mediterranean coastal waters has been performed for more than two decades. This study aimed at presenting the current contamination in 2021 and the temporal evolution of concentrations from 2000. Based on a relative spatial comparison, low concentrations were measured in 2021 at most sites (>83 %). Also, several stations with moderate to high levels were highlighted in the vicinity of major urban industrial centers (e.g., Marseille, Toulon) and near river mouths (e.g., Rhône, Var). Over the last 20 years, no major trend was revealed, mostly, especially for the relative high-level sites. This likely constant contamination over time, plus slight increases of metallic elements at a few sites, still raise questions on the efforts that remain to be made. The decreasing trends of organic compounds, in particular PAH, provide evidence of the efficiency of some management actions.


Asunto(s)
Mytilus , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Mytilus/química , Monitoreo del Ambiente , Bifenilos Policlorados/análisis , Alimentos Marinos
7.
Mar Pollut Bull ; 189: 114765, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36898272

RESUMEN

This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.


Asunto(s)
Cadena Alimentaria , Plancton , Mar Mediterráneo , Estaciones del Año , Oceanografía
8.
Environ Pollut ; 322: 121176, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731740

RESUMEN

Antifouling paints (APs) are one of the important sources of Cu and Zn contamination in coastal environments. This study applied for the first-time a multi-isotope (Cu, Zn, and Pb) and multi-elemental characterization of different AP brands to improve their tracking in marine environments. The Cu and Zn contents of APs were shown to be remarkably high ∼35% and ∼8%, respectively. The δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb of the APs differed depending on the manufacturers and color (-0.16 to +0.36‰, -0.34 to +0.03‰, and 1.1158 to 1.2140, respectively). A PCA analysis indicates that APs, tires, and brake pads have also distinct elemental fingerprints. Combining isotopic and elemental ratios (e.g., Zn/Cu) allows to distinguish the environmental samples. Nevertheless, a first attempt to apply this approach in highly urbanized harbor areas demonstrates difficulties in source apportionments, because the sediment was chemically and isotopically homogeneous. The similarity of isotope ranges between the harbor and non-exhaust traffic emission sources suggests that most metals are highly affected by urban runoff, and that APs are not the main contributors of these metals. It is suspected that AP-borne contamination should be punctual rather than dispersed, because of APs low solubility properties. Nevertheless, this study shows that the common coastal anthropogenic sources display different elemental and isotopic fingerprints, hence the potential for isotope source tracking applications in marine environments. Further study cases, combined with laboratory experiments to investigate isotope fractionation during releasing the metal sources are necessary to improve non-traditional isotope applications in environmental forensics.


Asunto(s)
Incrustaciones Biológicas , Metales Pesados , Plomo/análisis , Incrustaciones Biológicas/prevención & control , Isótopos/análisis , Zinc/análisis , Monitoreo del Ambiente , Metales Pesados/análisis
9.
Mar Pollut Bull ; 186: 114384, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455500

RESUMEN

Particle-size classes (7 fractions from 0.8 to 2000 µm) were collected in the deep chlorophyll maximum along a Mediterranean transect including the northern coastal zone (bays of Toulon and Marseilles, France), the offshore zone (near the North Balearic Thermal Front), and the southern coastal zone (Gulf of Gabès, Tunisia). Concentrations of biotic metals and metalloids (As, Cd, Cr, Cu, Fe, Mn, Ni, Sb, V, Zn) bound to living or dead organisms and faecal pellets were assessed by phosphorus normalisation. Biotic metals and metalloids concentrations (except Cr, Mn, and V) were higher in the offshore zone than in the coastal zones. In addition, biotic Sb and V concentrations appeared to be affected by atmospheric deposition, and biotic Cr concentrations appeared to be affected by local anthropogenic inputs. Essential elements (Cd, Cu, Fe, Mn, Ni, V, Zn) were very likely controlled both by the metabolic activity of certain organisms (nanoeukaryotes, copepods) and trophic structure. In the northern coastal zone, biomagnification of essential elements was controlled by copepods activities. In the offshore zone, metals and metalloids were not biomagnified probably due to homeostasis regulatory processes in organisms. In the southern coastal zone, biomagnification of As, Cu, Cr, Sb could probably induce specific effects within the planktonic network.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes Químicos del Agua , Cadena Alimentaria , Metaloides/análisis , Mar Mediterráneo , Cadmio , Monitoreo del Ambiente , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Metales/análisis , Metales Pesados/análisis
10.
Sci Total Environ ; 856(Pt 2): 158890, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36262004

RESUMEN

The geochemistry of rare earth elements (REEs) has been studied for a long time and has allowed us to highlight enrichments or depletions of REEs in aquatic ecosystems and to estimate anthropogenic inputs through normalization of data to different reference materials. This review of current literature on REE normalization highlighted the large number of different reference materials (a total of 12), as well as different anomaly calculation methods. This statement showed a real need for method harmonization to simplify the comparison between studies, which is currently very difficult. Normalization to Post-Archean Australian Shale (PAAS) emerged as being the most used (33 % of reported studies) regardless of the location and the nature of the studied samples and seem to be of higher quality. The interest of other reference materials was nevertheless underlined, as they could better represent the geographical situation or the nature of samples. Two main anomaly calculation methods have been highlighted: the linear interpolation/extrapolation and the geometric extrapolation using logarithmic modeling. However, due to variations in the estimation of neighbors' values, these two methods produce many different equations for the anomaly calculation of a single element. Current normalization practices based on shales and chondrites are suitable for abiotic samples but are questionable for biota. Indeed, normalization is increasingly used in studies addressing ecotoxicological issues which focus on biota and often aim to estimate the anthropogenic origin of bioaccumulated REEs. Due to the interspecific variability, as well as the complexity of mechanisms occurring in organisms when exposed to contaminants, new reference materials need to be established to consider the bioaccumulation/metabolization processes and the anthropogenic inputs of REEs based on the results of biotic samples.


Asunto(s)
Ecotoxicología , Metales de Tierras Raras , Monitoreo del Ambiente/métodos , Ecosistema , Australia , Metales de Tierras Raras/análisis
11.
Mar Pollut Bull ; 185(Pt A): 114315, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36368082

RESUMEN

This study uses Cu and Zn isotopic compositions as proxies of sources and metal transfers in the planktonic food webs from the Mediterranean Sea. Plankton was collected in spring 2019 in the deep chlorophyll maximum (DCM) along a North-South transect including coastal and offshore zones (MERITE-HIPPOCAMPE campaign). δ65Cu and δ66Zn were determined on four planktonic size fractions from 60 to 2000 µm. Combined δ65Cu and δ66Zn with geochemical tracers (Ti, particulate organic phosphorus) showed that geogenic particles were ubiquitous with plankton assemblages. The δ15N ecological tracer showed that planktonic food web was enriched in heavy isotopes of Cu and Zn in the higher trophic levels. δ65Cu were correlated with picoplankton in the offshore zone, and with zooplankton in the southern coastal zone. Firmicutes bacteria were found correlated with δ66Zn in northern and southern coastal zones suggesting decomposition of particulate matter at the DCM. These findings suggest that biogeochemical process may impact Cu and Zn isotopy in the planktonic community.


Asunto(s)
Cobre , Zinc , Zinc/análisis , Cobre/análisis , Plancton , Monitoreo del Ambiente , Mar Mediterráneo , Cadena Alimentaria
12.
Sci Total Environ ; 849: 157885, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35944646

RESUMEN

The intensive use of copper (Cu) compounds as an alternative biocide in antifouling paints (APs) has resulted in wide Cu contamination into the marine environment, especially near marina harbor activities. In this work, the applicability of Cu isotopes to discriminate Cu origins related to the use of Cu-based APs in marine environments was tested. To this, Cu isotopes in APs, shipyard sludges, and sediment cores sampled in the Cu-contaminated Mediterranean marina of Port Camargue were determined. APs represent an important dominant anthropogenic source for metals in this site, making it ideal to test Cu isotopes as tracers. The overall isotope composition of four sediment cores and a surface sample varied between -0.13 and 0.44 ‰ (δ65Cu relative to NIST-976). Selected APs brands show a similar Cu concentration ~0.15 % and δ65Cu average of 0.54 ± 0.05 ‰. The plot of δ65Cu vs concentration for all datasets allowed dissociating natural and APs end-members. However, sample isotope systematics were not consistent with a conservative mixing binary source process. Heavily Cu-contaminated sediments show isotope signatures lighter than APs brands. However, the most Cu-contaminated sample, located directly above the careening area, shows a δ65Cu slightly lighter than APs (0.44 ‰ vs 0.54 ‰, respectively). Results suggest the preferential releasing of a heavy isotope pool by APs when these compounds are solubilized in seawater. The isotope fractionation was attributed to potential chemical Cu coordination changes during its elemental partition between paint and marina seawater and the fractionation induced by the organic ligands in the water column, before deposition. Further laboratory experiments are recommended to model the isotope fractionation mechanisms related to Cu release by APs. Because the APs' isotope signature is modified in marine environments, the use of Cu isotopes as tracers of AP in marine environments is challenging and needs more investigation.


Asunto(s)
Incrustaciones Biológicas , Desinfectantes , Contaminantes Químicos del Agua , Incrustaciones Biológicas/prevención & control , Cobre/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Isótopos/análisis , Pintura , Agua , Contaminantes Químicos del Agua/análisis
13.
Aquat Toxicol ; 248: 106207, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35635982

RESUMEN

Chemical contaminants are one of the causes of the ongoing degradation of coastal and estuarine nurseries, key functional habitats in which the juveniles of many marine species grow. As chemical contaminants can cause a decrease in the energy available and induce defence mechanisms reducing the amount of energy allocated to life history traits, quantifying their effect on the fitness of juvenile fish is key to understand their population-level consequences. However, these effects are primarily estimated experimentally or in the wild but on a limited number of contaminants or congeners that do not reflect the wide variety of chemical contaminants to which juvenile fish are exposed. To address this issue, we measured concentrations of 14 trace metal elements (TMEs) and bioaccumulative organic contaminants (OCs) in European sea bass juveniles (1-year-old) from three major French nurseries (Seine, Loire and Gironde estuaries). We tested the hypotheses that (i) levels and profiles of contaminants differed among studied nurseries, and ii) fish growth and body condition (based on morphometric measurements and muscle C:N ratio) were lower in individuals with higher contaminant concentrations. Multivariate analyses showed that each nursery had distinct contaminant profiles for both TMEs and OCs, confirming the specific contamination of each estuary, and the large array of contaminants accumulated by sea bass juveniles. Increasing concentrations in some TMEs were associated to decreased growth, and TMEs were consistently related to lower fish body condition. The effect of OCs was more difficult to pinpoint possibly due to operational constraints (i.e., analyses on pooled fish) with contrasting results (i.e., higher growth and decreased body condition). Overall, this study shows that chemical contaminants are related to lower fish growth and body condition at an early life stage in the wild, an effect that can have major consequences if sustained in subsequent ages and associated with a decline in survival and/or reproductive success.


Asunto(s)
Lubina , Enfermedades de los Peces , Oligoelementos , Contaminantes Químicos del Agua , Animales , Lubina/metabolismo , Ecosistema , Estuarios , Oligoelementos/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Mar Pollut Bull ; 175: 113398, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35114550

RESUMEN

The advent of Multicollector ICP-MS inaugurated the analysis of new metal isotope systems, the so-called "non-traditional" isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current "Anthropocene" epoch, metal contamination will continue to threaten marine aquatic ecosystems, and "non-traditional" isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Biota , Monitoreo del Ambiente , Humanos , Isótopos/análisis , Metales/análisis , Contaminantes Químicos del Agua/análisis
15.
Environ Pollut ; 290: 118012, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482248

RESUMEN

Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters' Cu body burdens had increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.


Asunto(s)
Ostreidae , Contaminantes Químicos del Agua , Animales , Bioacumulación , Cobre/análisis , Ecosistema , Monitoreo del Ambiente , Humanos , Lactante , Isótopos , Contaminantes Químicos del Agua/análisis
16.
Curr Biol ; 31(12): 2682-2689.e7, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887182

RESUMEN

To evaluate the stability and resilience1 of coastal ecosystem communities to perturbations that occurred during the Anthropocene,2 pre-industrial biodiversity baselines inferred from paleoarchives are needed.3,4 The study of ancient DNA (aDNA) from sediments (sedaDNA)5 has provided valuable information about past dynamics of microbial species6-8 and communities9-18 in relation to ecosystem variations. Shifts in planktonic protist communities might significantly affect marine ecosystems through cascading effects,19-21 and therefore the analysis of this compartment is essential for the assessment of ecosystem variations. Here, sediment cores collected from different sites of the Bay of Brest (northeast Atlantic, France) allowed ca. 1,400 years of retrospective analyses of the effects of human pollution on marine protists. Comparison of sedaDNA extractions and metabarcoding analyses with different barcode regions (V4 and V7 18S rDNA) revealed that protist assemblages in ancient sediments are mainly composed of species known to produce resting stages. Heavy-metal pollution traces in sediments were ascribed to the World War II period and coincided with community shifts within dinoflagellates and stramenopiles. After the war and especially from the 1980s to 1990s, protist genera shifts followed chronic contaminations of agricultural origin. Community composition reconstruction over time showed that there was no recovery to a Middle Ages baseline composition. This demonstrates the irreversibility of the observed shifts after the cumulative effect of war and agricultural pollutions. Developing a paleoecological approach, this study highlights how human contaminations irreversibly affect marine microbial compartments, which contributes to the debate on coastal ecosystem preservation and restoration.


Asunto(s)
Dinoflagelados , Plancton , Biodiversidad , Dinoflagelados/genética , Ecosistema , Sedimentos Geológicos , Humanos , Plancton/genética , Estudios Retrospectivos , Segunda Guerra Mundial
17.
Arch Environ Contam Toxicol ; 81(4): 600-611, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33710402

RESUMEN

Rare earth elements (REE) are becoming an environmental pollutant of emerging concern, linked to their use in various anthropic processes. Because REE bioconcentrate in marine organisms throughout their food webs, a better understanding of biogeochemical processes leading to REE concentrations found in coastal species is necessary. This study was designed to assess REEs concentrations in various common bivalves from the French coastline to identify possible geographic, taxonomic, or temporal variations of concentrations. Based on the French Mussel Watch program, three species of bivalves (oyster Crassostrea gigas and mussels Mytilus edulis and Mytilus galloprovincialis) were collected all along the French metropolitan coast and soft tissues were analyzed for REE concentrations. Results have shown higher REE concentrations in bivalve soft tissues near estuaries without taxonomic nor national geographic differences. The highest levels have been observed in the Gironde estuary with total REE concentrations (∑REE) in oysters up to 10.94 µg g-1 d.w. The REE distribution pattern in both mussel species described a particle-like (inverse V-shape) pattern, whereas C. gigas REE distribution pattern changes from a particle-like to a dissolved-like pattern with a heavy REE (HREE) enrichment. However, no environmental parameter could be linked to these pattern changes. Finally, neither Gd anomalies nor an evolution of REE concentrations over a 30-year period have been detected in bivalves' soft tissues.


Asunto(s)
Crassostrea , Metales de Tierras Raras , Mytilus , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Estuarios , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Technol ; 55(1): 324-330, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33306351

RESUMEN

Copper (Cu) isotope compositions in bivalve mollusks used in marine-monitoring networks is a promising tool to monitor anthropogenic Cu contamination in coastal and marine ecosystems. To test this new biomonitoring tool, we investigated Cu isotope variations of two bivalves-the oyster Crassostrea gigas and the mussel Mytilus edulis-over 10 years (2009-2018) in a French coastal site contaminated by diffuse Cu anthropogenic sources. Each species displayed temporal concentration profiles consistent with their bioaccumulation mechanisms, that is, the Cu-regulating mussels with almost constant Cu concentrations and the Cu-hyperaccumulating oysters with variable concentrations that track Cu bioavailability trends at the sampling site. The temporal isotope profiles were analogous for both bivalve species, and an overall shift toward positive δ65Cu values with the increase of Cu bioavailabilities was associated with anthropogenic Cu inputs. Interestingly, mussels showed wider amplitudes in the isotope variations than oysters, suggesting that each species incorporates Cu isotopes in their tissues at different rates, depending on their bioaccumulation mechanisms and physiological features. This study is the first to demonstrate the potential of Cu isotopes in bivalves to infer Cu bioavailability changes related to anthropogenic inputs of this metal into the marine environment.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Monitoreo Biológico , Cobre/análisis , Ecosistema , Monitoreo del Ambiente , Isótopos , Contaminantes Químicos del Agua/análisis
19.
Mar Pollut Bull ; 143: 12-23, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31789146

RESUMEN

In this work, a multi-elemental approach combining Cu and Zn stable isotopes is used to assess the metal contamination evolution in the Loire estuary bulk sediments. Elemental geochemical data indicate an increase of metal concentrations from the beginning of the industrial period peaking in the 1990s, followed by an attenuation of metal contamination inputs to the estuary. Zinc isotope compositions suggest a binary mixing process between Zn derived from terrigenous material and multi-urban anthropogenic sources. Copper isotope systematics indicate a single natural dominant source represented by weathered silicate particles from soils and rocks. This work demonstrates the applicability of Zn isotopes to identify anthropogenic Zn sources in coastal systems, even under a low to moderate degree of contamination. Further studies are required to constrain Cu sources and to elucidate possible effects of grain-size and mineralogy in the Cu isotope composition of sediment in the Loire estuary.


Asunto(s)
Cobre/análisis , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Zinc/análisis , Monitoreo del Ambiente , Estuarios , Francia , Isótopos/análisis , Suelo/química , Análisis Espacio-Temporal , Isótopos de Zinc/análisis
20.
Aquat Toxicol ; 196: 154-167, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29407801

RESUMEN

Controlled laboratory experiments were conducted to test the effects of copper (Cu2+) and butyltins (BuT) on the growth, photosynthetic activity and toxin content of two HABs (Harmful Algal Blooms) dinoflagellates, the planktonic Alexandrium catenella and the benthic Ostreopsis cf. ovata. Microalgae were exposed to increasing concentrations of Cu2+ (10-4 to 31 nM) or BuT (0.084 to 84 nM) for seven days. When considering the growth, EC50 values were 0.16 (±0.09) nM and 0.03 (±0.02) nM of Cu2+ for A. catenella and O. cf. ovata, respectively. Regarding BuT, EC50 was 14.2 (±6) nM for O. cf. ovata, while A. catenella growth inhibition appeared at BuT concentrations ≥27 nM. Photosynthetic activity of the studied dinoflagellates decreased with increasing Cu and BuT concentrations. For O. cf. ovata, the response of this physiological parameter to contamination was less sensitive than the biomass. Cu exposure induced the formation of temporary cysts in both organisms that could resist adverse conditions. The ovatoxin-a and -b concentrations in O. cf. ovata cells increased significantly in the presence of Cu. Altogether, the results suggest a better tolerance of the planktonic A. catenella to Cu and BuT. This could result in a differentiated selection pressure exerted by these metals on phytoplankton species in highly polluted waters. The over-production of toxins in response to Cu stress could pose supplementary health and socio-economic threats in the contaminated marine ecosystems where HABs develop.


Asunto(s)
Cobre/toxicidad , Dinoflagelados/efectos de los fármacos , Compuestos Orgánicos de Estaño/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Biomasa , Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/metabolismo , Toxinas Marinas/metabolismo , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Plancton/efectos de los fármacos , Plancton/metabolismo , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...